Metamath Proof Explorer


Theorem sbaniota

Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion sbaniota ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 eupickbi ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑𝜓 ) ) )
2 sbiota1 ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) )
3 1 2 bitrd ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) )