Description: Theorem *14.26 in WhiteheadRussell p. 192. (Contributed by Andrew Salmon, 12-Jul-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbaniota | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eupickbi | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → 𝜓 ) ) ) | |
| 2 | sbiota1 | ⊢ ( ∃! 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) | |
| 3 | 1 2 | bitrd | ⊢ ( ∃! 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ↔ [ ( ℩ 𝑥 𝜑 ) / 𝑥 ] 𝜓 ) ) |