| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfbi2 |
⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 2 |
1
|
sbbii |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ) |
| 3 |
|
sbim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 4 |
|
sbim |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 5 |
3 4
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ∧ [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 6 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] ( 𝜑 → 𝜓 ) ∧ [ 𝑦 / 𝑥 ] ( 𝜓 → 𝜑 ) ) ) |
| 7 |
|
dfbi2 |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝜓 ) ∧ ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 8 |
5 6 7
|
3bitr4i |
⊢ ( [ 𝑦 / 𝑥 ] ( ( 𝜑 → 𝜓 ) ∧ ( 𝜓 → 𝜑 ) ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 9 |
2 8
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ↔ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ) |