Metamath Proof Explorer


Theorem sbbibvv

Description: Reversal of substitution. (Contributed by AV, 6-Aug-2023)

Ref Expression
Assertion sbbibvv ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfv 𝑦 𝜑
2 nfv 𝑥 𝜓
3 1 2 sbbib ( ∀ 𝑦 ( [ 𝑦 / 𝑥 ] 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 ↔ [ 𝑥 / 𝑦 ] 𝜓 ) )