Metamath Proof Explorer


Theorem sbbid

Description: Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993) Remove dependency on ax-10 and ax-13 . (Revised by Wolf Lammen, 24-Nov-2022) Revise df-sb . (Revised by Steven Nguyen, 11-Jul-2023)

Ref Expression
Hypotheses sbbid.1 𝑥 𝜑
sbbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbbid ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbbid.1 𝑥 𝜑
2 sbbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 alrimi ( 𝜑 → ∀ 𝑥 ( 𝜓𝜒 ) )
4 spsbbi ( ∀ 𝑥 ( 𝜓𝜒 ) → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) )
5 3 4 syl ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝑦 / 𝑥 ] 𝜒 ) )