Metamath Proof Explorer


Theorem sbc19.21g

Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypothesis sbcgf.1 𝑥 𝜑
Assertion sbc19.21g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 sbcgf.1 𝑥 𝜑
2 sbcimg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
3 1 sbcgf ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜑 ) )
4 3 imbi1d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ↔ ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
5 2 4 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )