Description: Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbcgf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
Assertion | sbc19.21g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcgf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | sbcimg | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) | |
3 | 1 | sbcgf | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
4 | 3 | imbi1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ↔ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
5 | 2 4 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |