Metamath Proof Explorer


Theorem sbc2ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof shortened by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypotheses sbc2ie.1 𝐴 ∈ V
sbc2ie.2 𝐵 ∈ V
sbc2ie.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion sbc2ie ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 sbc2ie.1 𝐴 ∈ V
2 sbc2ie.2 𝐵 ∈ V
3 sbc2ie.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
4 2 a1i ( 𝑥 = 𝐴𝐵 ∈ V )
5 4 3 sbcied ( 𝑥 = 𝐴 → ( [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )
6 1 5 sbcie ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 )