Metamath Proof Explorer


Theorem sbc2ieOLD

Description: Obsolete version of sbc2ie as of 12-Oct-2024. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sbc2ieOLD.1 𝐴 ∈ V
sbc2ieOLD.2 𝐵 ∈ V
sbc2ieOLD.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion sbc2ieOLD ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 sbc2ieOLD.1 𝐴 ∈ V
2 sbc2ieOLD.2 𝐵 ∈ V
3 sbc2ieOLD.3 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
4 nfv 𝑥 𝜓
5 nfv 𝑦 𝜓
6 2 nfth 𝑥 𝐵 ∈ V
7 4 5 6 3 sbc2iegf ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )
8 1 2 7 mp2an ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 )