Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets
sbc2ieOLD
Metamath Proof Explorer
Description: Obsolete version of sbc2ie as of 12-Oct-2024. (Contributed by NM , 16-Dec-2008) (Revised by Mario Carneiro , 19-Dec-2013)
(Proof modification is discouraged.) (New usage is discouraged.)
Ref
Expression
Hypotheses
sbc2ieOLD.1
⊢ 𝐴 ∈ V
sbc2ieOLD.2
⊢ 𝐵 ∈ V
sbc2ieOLD.3
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) )
Assertion
sbc2ieOLD
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 )
Proof
Step
Hyp
Ref
Expression
1
sbc2ieOLD.1
⊢ 𝐴 ∈ V
2
sbc2ieOLD.2
⊢ 𝐵 ∈ V
3
sbc2ieOLD.3
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) )
4
nfv
⊢ Ⅎ 𝑥 𝜓
5
nfv
⊢ Ⅎ 𝑦 𝜓
6
2
nfth
⊢ Ⅎ 𝑥 𝐵 ∈ V
7
4 5 6 3
sbc2iegf
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) )
8
1 2 7
mp2an
⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 )