Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbc2iedv.1 | ⊢ 𝐴 ∈ V | |
| sbc2iedv.2 | ⊢ 𝐵 ∈ V | ||
| sbc2iedv.3 | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) ) | ||
| Assertion | sbc2iedv | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2iedv.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbc2iedv.2 | ⊢ 𝐵 ∈ V | |
| 3 | sbc2iedv.3 | ⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) ) | |
| 4 | 1 | a1i | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 5 | 2 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
| 6 | 3 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 7 | 5 6 | sbcied | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |
| 8 | 4 7 | sbcied | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓 ↔ 𝜒 ) ) |