Metamath Proof Explorer


Theorem sbc2iedv

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Proof shortened by Mario Carneiro, 18-Oct-2016)

Ref Expression
Hypotheses sbc2iedv.1 𝐴 ∈ V
sbc2iedv.2 𝐵 ∈ V
sbc2iedv.3 ( 𝜑 → ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) ) )
Assertion sbc2iedv ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbc2iedv.1 𝐴 ∈ V
2 sbc2iedv.2 𝐵 ∈ V
3 sbc2iedv.3 ( 𝜑 → ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜓𝜒 ) ) )
4 1 a1i ( 𝜑𝐴 ∈ V )
5 2 a1i ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 ∈ V )
6 3 impl ( ( ( 𝜑𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜓𝜒 ) )
7 5 6 sbcied ( ( 𝜑𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )
8 4 7 sbcied ( 𝜑 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜓𝜒 ) )