Step |
Hyp |
Ref |
Expression |
1 |
|
sbc2iegf.1 |
⊢ Ⅎ 𝑥 𝜓 |
2 |
|
sbc2iegf.2 |
⊢ Ⅎ 𝑦 𝜓 |
3 |
|
sbc2iegf.3 |
⊢ Ⅎ 𝑥 𝐵 ∈ 𝑊 |
4 |
|
sbc2iegf.4 |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝐴 ∈ 𝑉 ) |
6 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ 𝑊 ) |
7 |
4
|
adantll |
⊢ ( ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
8 |
|
nfv |
⊢ Ⅎ 𝑦 ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) |
9 |
2
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 𝜓 ) |
10 |
6 7 8 9
|
sbciedf |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
11 |
10
|
adantll |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
12 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ 𝑉 |
13 |
12 3
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) |
14 |
1
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → Ⅎ 𝑥 𝜓 ) |
15 |
5 11 13 14
|
sbciedf |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |