Metamath Proof Explorer


Theorem sbc2iegf

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013)

Ref Expression
Hypotheses sbc2iegf.1 𝑥 𝜓
sbc2iegf.2 𝑦 𝜓
sbc2iegf.3 𝑥 𝐵𝑊
sbc2iegf.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
Assertion sbc2iegf ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbc2iegf.1 𝑥 𝜓
2 sbc2iegf.2 𝑦 𝜓
3 sbc2iegf.3 𝑥 𝐵𝑊
4 sbc2iegf.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
5 simpl ( ( 𝐴𝑉𝐵𝑊 ) → 𝐴𝑉 )
6 simpl ( ( 𝐵𝑊𝑥 = 𝐴 ) → 𝐵𝑊 )
7 4 adantll ( ( ( 𝐵𝑊𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → ( 𝜑𝜓 ) )
8 nfv 𝑦 ( 𝐵𝑊𝑥 = 𝐴 )
9 2 a1i ( ( 𝐵𝑊𝑥 = 𝐴 ) → Ⅎ 𝑦 𝜓 )
10 6 7 8 9 sbciedf ( ( 𝐵𝑊𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )
11 10 adantll ( ( ( 𝐴𝑉𝐵𝑊 ) ∧ 𝑥 = 𝐴 ) → ( [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )
12 nfv 𝑥 𝐴𝑉
13 12 3 nfan 𝑥 ( 𝐴𝑉𝐵𝑊 )
14 1 a1i ( ( 𝐴𝑉𝐵𝑊 ) → Ⅎ 𝑥 𝜓 )
15 5 11 13 14 sbciedf ( ( 𝐴𝑉𝐵𝑊 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑𝜓 ) )