| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 2 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
| 3 |
2
|
anbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 4 |
3
|
exbidv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 5 |
|
sb5 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
| 6 |
1 4 5
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 7 |
6
|
orcd |
⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 8 |
|
pm5.15 |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) |
| 9 |
|
vex |
⊢ 𝑥 ∈ V |
| 10 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ V ↔ 𝐴 ∈ V ) ) |
| 11 |
9 10
|
mpbii |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝜑 ) → 𝐴 ∈ V ) |
| 13 |
12
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 14 |
13
|
nexdv |
⊢ ( ¬ 𝐴 ∈ V → ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) |
| 15 |
11
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝑥 = 𝐴 ) |
| 16 |
15
|
pm2.21d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 17 |
16
|
alrimiv |
⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 18 |
14 17
|
2thd |
⊢ ( ¬ 𝐴 ∈ V → ( ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 19 |
18
|
bibi2d |
⊢ ( ¬ 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 20 |
19
|
orbi2d |
⊢ ( ¬ 𝐴 ∈ V → ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ¬ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) ) |
| 21 |
8 20
|
mpbii |
⊢ ( ¬ 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) |
| 22 |
7 21
|
pm2.61i |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝜑 ) ) ∨ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |