Metamath Proof Explorer


Theorem sbc3ie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014) (Revised by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses sbc3ie.1 𝐴 ∈ V
sbc3ie.2 𝐵 ∈ V
sbc3ie.3 𝐶 ∈ V
sbc3ie.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
Assertion sbc3ie ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] [ 𝐶 / 𝑧 ] 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 sbc3ie.1 𝐴 ∈ V
2 sbc3ie.2 𝐵 ∈ V
3 sbc3ie.3 𝐶 ∈ V
4 sbc3ie.4 ( ( 𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
5 3 a1i ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → 𝐶 ∈ V )
6 4 3expa ( ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) ∧ 𝑧 = 𝐶 ) → ( 𝜑𝜓 ) )
7 5 6 sbcied ( ( 𝑥 = 𝐴𝑦 = 𝐵 ) → ( [ 𝐶 / 𝑧 ] 𝜑𝜓 ) )
8 1 2 7 sbc2ie ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] [ 𝐶 / 𝑧 ] 𝜑𝜓 )