Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014) (Revised by Mario Carneiro, 29-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbc3ie.1 | ⊢ 𝐴 ∈ V | |
sbc3ie.2 | ⊢ 𝐵 ∈ V | ||
sbc3ie.3 | ⊢ 𝐶 ∈ V | ||
sbc3ie.4 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | sbc3ie | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] [ 𝐶 / 𝑧 ] 𝜑 ↔ 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3ie.1 | ⊢ 𝐴 ∈ V | |
2 | sbc3ie.2 | ⊢ 𝐵 ∈ V | |
3 | sbc3ie.3 | ⊢ 𝐶 ∈ V | |
4 | sbc3ie.4 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) | |
5 | 3 | a1i | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 ∈ V ) |
6 | 4 | 3expa | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ 𝑧 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
7 | 5 6 | sbcied | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( [ 𝐶 / 𝑧 ] 𝜑 ↔ 𝜓 ) ) |
8 | 1 2 7 | sbc2ie | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] [ 𝐶 / 𝑧 ] 𝜑 ↔ 𝜓 ) |