| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcor | ⊢ ( [ 𝐴  /  𝑥 ] ( ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ↔  ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ∨  [ 𝐴  /  𝑥 ] 𝜒 ) ) | 
						
							| 2 |  | df-3or | ⊢ ( ( 𝜑  ∨  𝜓  ∨  𝜒 )  ↔  ( ( 𝜑  ∨  𝜓 )  ∨  𝜒 ) ) | 
						
							| 3 | 2 | bicomi | ⊢ ( ( ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ↔  ( 𝜑  ∨  𝜓  ∨  𝜒 ) ) | 
						
							| 4 | 3 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] ( ( 𝜑  ∨  𝜓 )  ∨  𝜒 )  ↔  [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓  ∨  𝜒 ) ) | 
						
							| 5 |  | sbcor | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 ) ) | 
						
							| 6 | 5 | orbi1i | ⊢ ( ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓 )  ∨  [ 𝐴  /  𝑥 ] 𝜒 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  ∨  [ 𝐴  /  𝑥 ] 𝜒 ) ) | 
						
							| 7 | 1 4 6 | 3bitr3i | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓  ∨  𝜒 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  ∨  [ 𝐴  /  𝑥 ] 𝜒 ) ) | 
						
							| 8 |  | df-3or | ⊢ ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓  ∨  [ 𝐴  /  𝑥 ] 𝜒 )  ↔  ( ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓 )  ∨  [ 𝐴  /  𝑥 ] 𝜒 ) ) | 
						
							| 9 | 7 8 | bitr4i | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝜑  ∨  𝜓  ∨  𝜒 )  ↔  ( [ 𝐴  /  𝑥 ] 𝜑  ∨  [ 𝐴  /  𝑥 ] 𝜓  ∨  [ 𝐴  /  𝑥 ] 𝜒 ) ) |