Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
4 |
1 3
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
5 |
|
df-3or |
⊢ ( ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ) |
6 |
5
|
bicomi |
⊢ ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
7 |
6
|
ax-gen |
⊢ ∀ 𝑥 ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) |
8 |
|
spsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
9 |
1 7 8
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |
10 |
|
sbcbig |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ↔ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
11 |
10
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) ) |
12 |
1 9 11
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) ) |
13 |
|
bitr3 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
14 |
13
|
com12 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
15 |
4 12 14
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
16 |
|
sbcor |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
17 |
16
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
18 |
1 17
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
19 |
|
orbi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
20 |
18 19
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
21 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ↔ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
22 |
21
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
23 |
15 20 22
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
24 |
|
df-3or |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
25 |
24
|
bicomi |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
26 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ↔ ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
27 |
26
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( ( ( ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ) ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) ) |
28 |
23 25 27
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |
29 |
28
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∨ 𝜓 ∨ 𝜒 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∨ [ 𝐴 / 𝑥 ] 𝜓 ∨ [ 𝐴 / 𝑥 ] 𝜒 ) ) ) |