Metamath Proof Explorer


Theorem sbc5

Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993) (Revised by Mario Carneiro, 12-Oct-2016) (Proof shortened by SN, 2-Sep-2024)

Ref Expression
Assertion sbc5 ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
2 clelab ( 𝐴 ∈ { 𝑥𝜑 } ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )
3 1 2 bitri ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝐴𝜑 ) )