Step |
Hyp |
Ref |
Expression |
1 |
|
sbcabel.1 |
⊢ Ⅎ 𝑥 𝐵 |
2 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
3 |
|
sbcex2 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) |
4 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ∧ [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ) ) |
5 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) |
6 |
|
sbcbig |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
7 |
|
sbcg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑤 ) ) |
8 |
7
|
bibi1d |
⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
9 |
6 8
|
bitrd |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
10 |
9
|
albidv |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
11 |
5 10
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
12 |
|
abeq2 |
⊢ ( 𝑤 = { 𝑦 ∣ 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) |
13 |
12
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ 𝜑 ) ) |
14 |
|
abeq2 |
⊢ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑤 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
15 |
11 13 14
|
3bitr4g |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ↔ 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ) ) |
16 |
1
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ 𝐵 |
17 |
16
|
sbcgf |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) |
18 |
15 17
|
anbi12d |
⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑤 = { 𝑦 ∣ 𝜑 } ∧ [ 𝐴 / 𝑥 ] 𝑤 ∈ 𝐵 ) ↔ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
19 |
4 18
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
20 |
19
|
exbidv |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑤 [ 𝐴 / 𝑥 ] ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
21 |
3 20
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) ) |
22 |
|
dfclel |
⊢ ( { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) |
23 |
22
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) |
24 |
|
dfclel |
⊢ ( { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ↔ ∃ 𝑤 ( 𝑤 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∧ 𝑤 ∈ 𝐵 ) ) |
25 |
21 23 24
|
3bitr4g |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ) ) |
26 |
2 25
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] { 𝑦 ∣ 𝜑 } ∈ 𝐵 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝜑 } ∈ 𝐵 ) ) |