Description: Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016) (Revised by NM, 18-Aug-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcal | ⊢ ( [ 𝐴 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcex | ⊢ ( [ 𝐴 / 𝑦 ] ∀ 𝑥 𝜑 → 𝐴 ∈ V ) | |
| 2 | sbcex | ⊢ ( [ 𝐴 / 𝑦 ] 𝜑 → 𝐴 ∈ V ) | |
| 3 | 2 | sps | ⊢ ( ∀ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 → 𝐴 ∈ V ) | 
| 4 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ [ 𝐴 / 𝑦 ] ∀ 𝑥 𝜑 ) ) | |
| 5 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜑 ) ) | |
| 6 | 5 | albidv | ⊢ ( 𝑧 = 𝐴 → ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) ) | 
| 7 | sbal | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 8 | 4 6 7 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) ) | 
| 9 | 1 3 8 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) |