| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcalf.1 |
⊢ Ⅎ 𝑦 𝐴 |
| 2 |
|
sb8v |
⊢ ( ∀ 𝑦 𝜑 ↔ ∀ 𝑧 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 3 |
2
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 𝜑 ↔ [ 𝐴 / 𝑥 ] ∀ 𝑧 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 4 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ) |
| 5 |
|
nfs1v |
⊢ Ⅎ 𝑦 [ 𝑧 / 𝑦 ] 𝜑 |
| 6 |
1 5
|
nfsbcw |
⊢ Ⅎ 𝑦 [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 |
| 7 |
|
nfv |
⊢ Ⅎ 𝑧 [ 𝐴 / 𝑥 ] 𝜑 |
| 8 |
|
sbequ12r |
⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ 𝜑 ) ) |
| 9 |
8
|
sbcbidv |
⊢ ( 𝑧 = 𝑦 → ( [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 10 |
6 7 9
|
cbvalv1 |
⊢ ( ∀ 𝑧 [ 𝐴 / 𝑥 ] [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 11 |
3 4 10
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑦 𝜑 ↔ ∀ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |