Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ V ) |
2 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → 𝐴 ∈ V ) |
3 |
2
|
adantl |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) → 𝐴 ∈ V ) |
4 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ) ) |
5 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
6 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜓 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
8 |
|
sban |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
9 |
4 7 8
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) ) |
10 |
1 3 9
|
pm5.21nii |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝜑 ∧ 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ∧ [ 𝐴 / 𝑥 ] 𝜓 ) ) |