Metamath Proof Explorer


Theorem sbcbi1

Description: Distribution of class substitution over biconditional. One direction of sbcbig that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcbi1 ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → 𝐴 ∈ V )
2 sbcbig ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
3 2 biimpd ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
4 1 3 mpcom ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )