Metamath Proof Explorer


Theorem sbcbi2

Description: Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018) (Proof shortened by Wolf Lammen, 4-May-2023) Avoid ax-10, ax-12. (Revised by Steven Nguyen, 5-May-2024)

Ref Expression
Assertion sbcbi2 ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )

Proof

Step Hyp Ref Expression
1 abbi1 ( ∀ 𝑥 ( 𝜑𝜓 ) → { 𝑥𝜑 } = { 𝑥𝜓 } )
2 eleq2 ( { 𝑥𝜑 } = { 𝑥𝜓 } → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑥𝜓 } ) )
3 1 2 syl ( ∀ 𝑥 ( 𝜑𝜓 ) → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝐴 ∈ { 𝑥𝜓 } ) )
4 df-sbc ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ { 𝑥𝜑 } )
5 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
6 3 4 5 3bitr4g ( ∀ 𝑥 ( 𝜑𝜓 ) → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )