Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbcbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| sbcbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | sbcbid | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcbid.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | sbcbid.2 | ⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | 1 2 | abbid | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑥 ∣ 𝜒 } ) |
| 4 | 3 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝐴 ∈ { 𝑥 ∣ 𝜒 } ) ) |
| 5 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) | |
| 6 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜒 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜒 } ) | |
| 7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑥 ] 𝜒 ) ) |