Metamath Proof Explorer


Theorem sbcbid

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014)

Ref Expression
Hypotheses sbcbid.1 𝑥 𝜑
sbcbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbcbid ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcbid.1 𝑥 𝜑
2 sbcbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 1 2 abbid ( 𝜑 → { 𝑥𝜓 } = { 𝑥𝜒 } )
4 3 eleq2d ( 𝜑 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝐴 ∈ { 𝑥𝜒 } ) )
5 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
6 df-sbc ( [ 𝐴 / 𝑥 ] 𝜒𝐴 ∈ { 𝑥𝜒 } )
7 4 5 6 3bitr4g ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )