Metamath Proof Explorer


Theorem sbcbidv

Description: Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014) Drop ax-12 . (Revised by Gino Giotto, 1-Dec-2023)

Ref Expression
Hypothesis sbcbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbcbidv ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 eqidd ( 𝜑𝐴 = 𝐴 )
3 2 1 sbceqbid ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )