Metamath Proof Explorer


Theorem sbcbig

Description: Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Assertion sbcbig ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ) )
2 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜓 ) )
4 2 3 bibi12d ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )
5 sbbi ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜓 ) )
6 1 4 5 vtoclbg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) ) )