Metamath Proof Explorer


Theorem sbcbii

Description: Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005)

Ref Expression
Hypothesis sbcbii.1 ( 𝜑𝜓 )
Assertion sbcbii ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 )

Proof

Step Hyp Ref Expression
1 sbcbii.1 ( 𝜑𝜓 )
2 1 a1i ( ⊤ → ( 𝜑𝜓 ) )
3 2 sbcbidv ( ⊤ → ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 ) )
4 3 mptru ( [ 𝐴 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜓 )