Metamath Proof Explorer


Theorem sbcbr

Description: Move substitution in and out of a binary relation. (Contributed by NM, 23-Aug-2018)

Ref Expression
Assertion sbcbr ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶𝐵 𝐴 / 𝑥 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 sbcbr123 ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )
2 csbconstg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐵 )
3 csbconstg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐶 = 𝐶 )
4 2 3 breq12d ( 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶𝐵 𝐴 / 𝑥 𝑅 𝐶 ) )
5 br0 ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶
6 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝑅 = ∅ )
7 6 breqd ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
8 5 7 mtbiri ( ¬ 𝐴 ∈ V → ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )
9 br0 ¬ 𝐵𝐶
10 6 breqd ( ¬ 𝐴 ∈ V → ( 𝐵 𝐴 / 𝑥 𝑅 𝐶𝐵𝐶 ) )
11 9 10 mtbiri ( ¬ 𝐴 ∈ V → ¬ 𝐵 𝐴 / 𝑥 𝑅 𝐶 )
12 8 11 2falsed ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶𝐵 𝐴 / 𝑥 𝑅 𝐶 ) )
13 4 12 pm2.61i ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶𝐵 𝐴 / 𝑥 𝑅 𝐶 )
14 1 13 bitri ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶𝐵 𝐴 / 𝑥 𝑅 𝐶 )