Metamath Proof Explorer


Theorem sbcbr123

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005) (Revised by NM, 22-Aug-2018)

Ref Expression
Assertion sbcbr123 ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶𝐴 ∈ V )
2 br0 ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶
3 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝑅 = ∅ )
4 3 breqd ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 ) )
5 2 4 mtbiri ( ¬ 𝐴 ∈ V → ¬ 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )
6 5 con4i ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶𝐴 ∈ V )
7 dfsbcq2 ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝐵 𝑅 𝐶[ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 ) )
8 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
9 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝑅 = 𝐴 / 𝑥 𝑅 )
10 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐶 )
11 8 9 10 breq123d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝑅 𝑦 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 ) )
12 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
13 nfcsb1v 𝑥 𝑦 / 𝑥 𝑅
14 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
15 12 13 14 nfbr 𝑥 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝑅 𝑦 / 𝑥 𝐶
16 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
17 csbeq1a ( 𝑥 = 𝑦𝑅 = 𝑦 / 𝑥 𝑅 )
18 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
19 16 17 18 breq123d ( 𝑥 = 𝑦 → ( 𝐵 𝑅 𝐶 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝑅 𝑦 / 𝑥 𝐶 ) )
20 15 19 sbiev ( [ 𝑦 / 𝑥 ] 𝐵 𝑅 𝐶 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝑅 𝑦 / 𝑥 𝐶 )
21 7 11 20 vtoclbg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 ) )
22 1 6 21 pm5.21nii ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )