Metamath Proof Explorer


Theorem sbcbr12g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr12g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sbcbr123 ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 )
2 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑅 = 𝑅 )
3 2 breqd ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝑅 𝐴 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐴 / 𝑥 𝐶 ) )
4 1 3 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐴 / 𝑥 𝐶 ) )