Metamath Proof Explorer


Theorem sbcbr1g

Description: Move substitution in and out of a binary relation. (Contributed by NM, 13-Dec-2005)

Ref Expression
Assertion sbcbr1g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sbcbr12g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐴 / 𝑥 𝐶 ) )
2 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝐶 = 𝐶 )
3 2 breq2d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝐵 𝑅 𝐴 / 𝑥 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐶 ) )
4 1 3 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 𝑅 𝐶 𝐴 / 𝑥 𝐵 𝑅 𝐶 ) )