Step |
Hyp |
Ref |
Expression |
1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
2 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
3 |
|
dfsbcq |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
4 |
|
dfsbcq |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
5 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
6 |
5
|
sbbii |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
8 |
7
|
sbco2 |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
9 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
10 |
6 8 9
|
3bitr3ri |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
11 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
12 |
10 11
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
13 |
3 4 12
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
14 |
1 2 13
|
pm5.21nii |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |