Description: Composition of two substitutions. Version of sbcco3g with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sbcco3gw.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
Assertion | sbcco3gw | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcco3gw.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
2 | sbcnestgw | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ) ) | |
3 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
4 | nfcvd | ⊢ ( 𝐴 ∈ V → Ⅎ 𝑥 𝐶 ) | |
5 | 4 1 | csbiegf | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
6 | dfsbcq | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜑 ) ) | |
7 | 3 5 6 | 3syl | ⊢ ( 𝐴 ∈ 𝑉 → ( [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜑 ) ) |
8 | 2 7 | bitrd | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ [ 𝐶 / 𝑦 ] 𝜑 ) ) |