| Step | Hyp | Ref | Expression | 
						
							| 1 |  | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 2 |  | exdistr | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 3 |  | an12 | ⊢ ( ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ( 𝑦  =  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑥 ( 𝑦  =  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 5 |  | 19.42v | ⊢ ( ∃ 𝑥 ( 𝑦  =  𝐵  ∧  ( 𝑥  =  𝐴  ∧  𝜑 ) )  ↔  ( 𝑦  =  𝐵  ∧  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 6 | 4 5 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ( 𝑦  =  𝐵  ∧  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 7 | 6 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 8 | 1 2 7 | 3bitr3i | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) )  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 9 |  | sbc5 | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) ) | 
						
							| 10 |  | sbc5 | ⊢ ( [ 𝐵  /  𝑦 ] ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 11 | 8 9 10 | 3bitr4i | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 )  ↔  [ 𝐵  /  𝑦 ] ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 12 |  | sbc5 | ⊢ ( [ 𝐵  /  𝑦 ] 𝜑  ↔  ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) | 
						
							| 13 | 12 | sbcbii | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐴  /  𝑥 ] ∃ 𝑦 ( 𝑦  =  𝐵  ∧  𝜑 ) ) | 
						
							| 14 |  | sbc5 | ⊢ ( [ 𝐴  /  𝑥 ] 𝜑  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 15 | 14 | sbcbii | ⊢ ( [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑  ↔  [ 𝐵  /  𝑦 ] ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) | 
						
							| 16 | 11 13 15 | 3bitr4i | ⊢ ( [ 𝐴  /  𝑥 ] [ 𝐵  /  𝑦 ] 𝜑  ↔  [ 𝐵  /  𝑦 ] [ 𝐴  /  𝑥 ] 𝜑 ) |