| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 2 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 3 |
|
dfsbcq |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) ) |
| 4 |
|
dfsbcq |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 5 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 6 |
5
|
sbbii |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
| 7 |
|
sbco2vv |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 8 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ) |
| 9 |
6 7 8
|
3bitr3ri |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 10 |
|
sbsbc |
⊢ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 |
9 10
|
bitri |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) |
| 12 |
3 4 11
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 13 |
1 2 12
|
pm5.21nii |
⊢ ( [ 𝐴 / 𝑦 ] [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |