Metamath Proof Explorer


Theorem sbccsb

Description: Substitution into a wff expressed in terms of substitution into a class. (Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb ( [ 𝐴 / 𝑥 ] 𝜑𝑦 𝐴 / 𝑥 { 𝑦𝜑 } )

Proof

Step Hyp Ref Expression
1 abid ( 𝑦 ∈ { 𝑦𝜑 } ↔ 𝜑 )
2 1 sbcbii ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦𝜑 } ↔ [ 𝐴 / 𝑥 ] 𝜑 )
3 sbcel2 ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦𝜑 } ↔ 𝑦 𝐴 / 𝑥 { 𝑦𝜑 } )
4 2 3 bitr3i ( [ 𝐴 / 𝑥 ] 𝜑𝑦 𝐴 / 𝑥 { 𝑦𝜑 } )