Metamath Proof Explorer
Description: Substitution into a wff expressed in terms of substitution into a class.
(Contributed by NM, 15-Aug-2007) (Revised by NM, 18-Aug-2018)
|
|
Ref |
Expression |
|
Assertion |
sbccsb |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abid |
⊢ ( 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝜑 ) |
2 |
1
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
3 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ { 𝑦 ∣ 𝜑 } ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |
4 |
2 3
|
bitr3i |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝜑 } ) |