Metamath Proof Explorer


Theorem sbccsb2

Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb2 ( [ 𝐴 / 𝑥 ] 𝜑𝐴 𝐴 / 𝑥 { 𝑥𝜑 } )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] 𝜑𝐴 ∈ V )
2 elex ( 𝐴 𝐴 / 𝑥 { 𝑥𝜑 } → 𝐴 ∈ V )
3 abid ( 𝑥 ∈ { 𝑥𝜑 } ↔ 𝜑 )
4 3 sbcbii ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥𝜑 } ↔ [ 𝐴 / 𝑥 ] 𝜑 )
5 sbcel12 ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥𝜑 } ↔ 𝐴 / 𝑥 𝑥 𝐴 / 𝑥 { 𝑥𝜑 } )
6 csbvarg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝑥 = 𝐴 )
7 6 eleq1d ( 𝐴 ∈ V → ( 𝐴 / 𝑥 𝑥 𝐴 / 𝑥 { 𝑥𝜑 } ↔ 𝐴 𝐴 / 𝑥 { 𝑥𝜑 } ) )
8 5 7 bitrid ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑥 ∈ { 𝑥𝜑 } ↔ 𝐴 𝐴 / 𝑥 { 𝑥𝜑 } ) )
9 4 8 bitr3id ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑𝐴 𝐴 / 𝑥 { 𝑥𝜑 } ) )
10 1 2 9 pm5.21nii ( [ 𝐴 / 𝑥 ] 𝜑𝐴 𝐴 / 𝑥 { 𝑥𝜑 } )