Step |
Hyp |
Ref |
Expression |
1 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) ) |
2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) |
3 |
2
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
4 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) |
5 |
4
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
6 |
3 5
|
eleq12d |
⊢ ( 𝑧 = 𝐴 → ( { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
7 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 |
8 |
7
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } |
9 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 |
10 |
9
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
11 |
8 10
|
nfel |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
12 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐵 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
13 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐶 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
14 |
12 13
|
eleq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
15 |
11 14
|
sbiev |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
16 |
1 6 15
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
17 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } |
18 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } |
19 |
17 18
|
eleq12i |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
20 |
16 19
|
bitr4di |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
21 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 → 𝐴 ∈ V ) |
22 |
21
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) |
23 |
|
noel |
⊢ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ∅ |
24 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
25 |
24
|
eleq2d |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ∅ ) ) |
26 |
23 25
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
27 |
22 26
|
2falsed |
⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
28 |
20 27
|
pm2.61i |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |