| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) ) |
| 2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) |
| 3 |
2
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
| 4 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ) ) |
| 5 |
4
|
abbidv |
⊢ ( 𝑧 = 𝐴 → { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 6 |
3 5
|
eleq12d |
⊢ ( 𝑧 = 𝐴 → ( { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 7 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 |
| 8 |
7
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } |
| 9 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 |
| 10 |
9
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
| 11 |
8 10
|
nfel |
⊢ Ⅎ 𝑥 { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } |
| 12 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐵 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
| 13 |
|
sbab |
⊢ ( 𝑥 = 𝑧 → 𝐶 = { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 14 |
12 13
|
eleq12d |
⊢ ( 𝑥 = 𝑧 → ( 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 15 |
11 14
|
sbiev |
⊢ ( [ 𝑧 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 16 |
1 6 15
|
vtoclbg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) ) |
| 17 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } |
| 18 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } |
| 19 |
17 18
|
eleq12i |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 } ) |
| 20 |
16 19
|
bitr4di |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 21 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 → 𝐴 ∈ V ) |
| 22 |
21
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) |
| 23 |
|
noel |
⊢ ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ∅ |
| 24 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
| 25 |
24
|
eleq2d |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ∅ ) ) |
| 26 |
23 25
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ V → ¬ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 27 |
22 26
|
2falsed |
⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 28 |
20 27
|
pm2.61i |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |