Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcel1v | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ∈ 𝐵 → 𝐴 ∈ V ) | |
2 | elex | ⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ V ) | |
3 | dfsbcq2 | ⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑥 ∈ 𝐵 ) ) | |
4 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
5 | clelsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) | |
6 | 3 4 5 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) |
7 | 1 2 6 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑥 ] 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) |