Step |
Hyp |
Ref |
Expression |
1 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
2 |
|
csbconstg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
3 |
2
|
eleq1d |
⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
4 |
1 3
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
5 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 → 𝐴 ∈ V ) |
6 |
5
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ) |
7 |
|
noel |
⊢ ¬ 𝐵 ∈ ∅ |
8 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
9 |
8
|
eleq2d |
⊢ ( ¬ 𝐴 ∈ V → ( 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐵 ∈ ∅ ) ) |
10 |
7 9
|
mtbiri |
⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
11 |
6 10
|
2falsed |
⊢ ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
12 |
4 11
|
pm2.61i |
⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |