| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 2 |  | csbconstg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 3 | 2 | eleq1d | ⊢ ( 𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ↔  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 4 | 1 3 | bitrid | ⊢ ( 𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶  ↔  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 5 |  | sbcex | ⊢ ( [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶  →  𝐴  ∈  V ) | 
						
							| 6 | 5 | con3i | ⊢ ( ¬  𝐴  ∈  V  →  ¬  [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶 ) | 
						
							| 7 |  | noel | ⊢ ¬  𝐵  ∈  ∅ | 
						
							| 8 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  ∅ ) | 
						
							| 9 | 8 | eleq2d | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  ↔  𝐵  ∈  ∅ ) ) | 
						
							| 10 | 7 9 | mtbiri | ⊢ ( ¬  𝐴  ∈  V  →  ¬  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 11 | 6 10 | 2falsed | ⊢ ( ¬  𝐴  ∈  V  →  ( [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶  ↔  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 12 | 4 11 | pm2.61i | ⊢ ( [ 𝐴  /  𝑥 ] 𝐵  ∈  𝐶  ↔  𝐵  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) |