Metamath Proof Explorer


Theorem sbcel2

Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcel2 ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐵 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 sbcel12 ( [ 𝐴 / 𝑥 ] 𝐵𝐶 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶 )
2 csbconstg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐵 )
3 2 eleq1d ( 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐶𝐵 𝐴 / 𝑥 𝐶 ) )
4 1 3 bitrid ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐵 𝐴 / 𝑥 𝐶 ) )
5 sbcex ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐴 ∈ V )
6 5 con3i ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝐵𝐶 )
7 noel ¬ 𝐵 ∈ ∅
8 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐶 = ∅ )
9 8 eleq2d ( ¬ 𝐴 ∈ V → ( 𝐵 𝐴 / 𝑥 𝐶𝐵 ∈ ∅ ) )
10 7 9 mtbiri ( ¬ 𝐴 ∈ V → ¬ 𝐵 𝐴 / 𝑥 𝐶 )
11 6 10 2falsed ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐵 𝐴 / 𝑥 𝐶 ) )
12 4 11 pm2.61i ( [ 𝐴 / 𝑥 ] 𝐵𝐶𝐵 𝐴 / 𝑥 𝐶 )