Metamath Proof Explorer


Theorem sbcel21v

Description: Class substitution into a membership relation. One direction of sbcel2gv that holds for proper classes. (Contributed by NM, 17-Aug-2018)

Ref Expression
Assertion sbcel21v ( [ 𝐵 / 𝑥 ] 𝐴𝑥𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐵 / 𝑥 ] 𝐴𝑥𝐵 ∈ V )
2 sbcel2gv ( 𝐵 ∈ V → ( [ 𝐵 / 𝑥 ] 𝐴𝑥𝐴𝐵 ) )
3 2 biimpd ( 𝐵 ∈ V → ( [ 𝐵 / 𝑥 ] 𝐴𝑥𝐴𝐵 ) )
4 1 3 mpcom ( [ 𝐵 / 𝑥 ] 𝐴𝑥𝐴𝐵 )