Metamath Proof Explorer


Theorem sbceq1a

Description: Equality theorem for class substitution. Class version of sbequ12 . (Contributed by NM, 26-Sep-2003)

Ref Expression
Assertion sbceq1a ( 𝑥 = 𝐴 → ( 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )

Proof

Step Hyp Ref Expression
1 sbid ( [ 𝑥 / 𝑥 ] 𝜑𝜑 )
2 dfsbcq2 ( 𝑥 = 𝐴 → ( [ 𝑥 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
3 1 2 bitr3id ( 𝑥 = 𝐴 → ( 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )