Description: Equality theorem for class substitution. Class version of sbequ12r . (Contributed by NM, 4-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sbceq2a | ⊢ ( 𝐴 = 𝑥 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
2 | 1 | eqcoms | ⊢ ( 𝐴 = 𝑥 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
3 | 2 | bicomd | ⊢ ( 𝐴 = 𝑥 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |