Metamath Proof Explorer


Theorem sbceq2g

Description: Move proper substitution to second argument of an equality. (Contributed by NM, 30-Nov-2005)

Ref Expression
Assertion sbceq2g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶𝐵 = 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 sbceqg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 ) )
2 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝐵 = 𝐵 )
3 2 eqeq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶𝐵 = 𝐴 / 𝑥 𝐶 ) )
4 1 3 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶𝐵 = 𝐴 / 𝑥 𝐶 ) )