Description: Class version of one implication of equvelv . (Contributed by Andrew Salmon, 28-Jun-2011) (Proof shortened by SN, 26-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | sbceqal | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) | |
2 | eqeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
3 | 1 2 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) ↔ ( 𝐴 = 𝐴 → 𝐴 = 𝐵 ) ) ) |
4 | eqid | ⊢ 𝐴 = 𝐴 | |
5 | 4 | a1bi | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 = 𝐴 → 𝐴 = 𝐵 ) ) |
6 | 3 5 | bitr4di | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
7 | 6 | spcgv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) ) |