Metamath Proof Explorer


Theorem sbceqal

Description: Class version of one implication of equvelv . (Contributed by Andrew Salmon, 28-Jun-2011)

Ref Expression
Assertion sbceqal ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 spsbc ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝑥 = 𝐵 ) ) )
2 sbcimg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝑥 = 𝐵 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴[ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) ) )
3 eqid 𝐴 = 𝐴
4 eqsbc3 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴𝐴 = 𝐴 ) )
5 3 4 mpbiri ( 𝐴𝑉[ 𝐴 / 𝑥 ] 𝑥 = 𝐴 )
6 pm5.5 ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴 → ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴[ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) )
7 5 6 syl ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐴[ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) ↔ [ 𝐴 / 𝑥 ] 𝑥 = 𝐵 ) )
8 eqsbc3 ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑥 = 𝐵𝐴 = 𝐵 ) )
9 2 7 8 3bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝑥 = 𝐵 ) ↔ 𝐴 = 𝐵 ) )
10 1 9 sylibd ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝑥 = 𝐵 ) → 𝐴 = 𝐵 ) )