Metamath Proof Explorer


Theorem sbceqi

Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypotheses sbceqi.1 𝐴 ∈ V
sbceqi.2 𝐴 / 𝑥 𝐵 = 𝐷
sbceqi.3 𝐴 / 𝑥 𝐶 = 𝐸
Assertion sbceqi ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶𝐷 = 𝐸 )

Proof

Step Hyp Ref Expression
1 sbceqi.1 𝐴 ∈ V
2 sbceqi.2 𝐴 / 𝑥 𝐵 = 𝐷
3 sbceqi.3 𝐴 / 𝑥 𝐶 = 𝐸
4 sbceqg ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 ) )
5 1 4 ax-mp ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶 )
6 2 3 eqeq12i ( 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐶𝐷 = 𝐸 )
7 5 6 bitri ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶𝐷 = 𝐸 )