Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbceqi.1 | ⊢ 𝐴 ∈ V | |
sbceqi.2 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 | ||
sbceqi.3 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐸 | ||
Assertion | sbceqi | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ 𝐷 = 𝐸 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqi.1 | ⊢ 𝐴 ∈ V | |
2 | sbceqi.2 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 | |
3 | sbceqi.3 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐸 | |
4 | sbceqg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) | |
5 | 1 4 | ax-mp | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
6 | 2 3 | eqeq12i | ⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ 𝐷 = 𝐸 ) |
7 | 5 6 | bitri | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐶 ↔ 𝐷 = 𝐸 ) |