Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004) (Revised by NM, 18-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | sbcex2 | ⊢ ( [ 𝐴 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex | ⊢ ( [ 𝐴 / 𝑦 ] ∃ 𝑥 𝜑 → 𝐴 ∈ V ) | |
2 | sbcex | ⊢ ( [ 𝐴 / 𝑦 ] 𝜑 → 𝐴 ∈ V ) | |
3 | 2 | exlimiv | ⊢ ( ∃ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 → 𝐴 ∈ V ) |
4 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ [ 𝐴 / 𝑦 ] ∃ 𝑥 𝜑 ) ) | |
5 | dfsbcq2 | ⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑦 ] 𝜑 ↔ [ 𝐴 / 𝑦 ] 𝜑 ) ) | |
6 | 5 | exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∃ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) ) |
7 | sbex | ⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) | |
8 | 4 6 7 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) ) |
9 | 1 3 8 | pm5.21nii | ⊢ ( [ 𝐴 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝐴 / 𝑦 ] 𝜑 ) |