Step |
Hyp |
Ref |
Expression |
1 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( [ 𝐴 / 𝑥 ] Rel 𝐹 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
2 |
|
sbcrel |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Rel 𝐹 ↔ Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |
3 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) |
4 |
|
sbcex2 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) |
5 |
|
sbcal |
⊢ ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) |
6 |
|
sbcimg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 → [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ) ) ) |
7 |
|
sbcbr123 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ) |
8 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑤 = 𝑤 ) |
9 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) |
10 |
8 9
|
breq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ↔ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 ) ) |
11 |
7 10
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 ↔ 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 ) ) |
12 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ↔ 𝑧 = 𝑦 ) ) |
13 |
11 12
|
imbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑤 𝐹 𝑧 → [ 𝐴 / 𝑥 ] 𝑧 = 𝑦 ) ↔ ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
14 |
6 13
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
15 |
14
|
albidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
16 |
5 15
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
17 |
16
|
exbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
18 |
4 17
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
19 |
18
|
albidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑤 [ 𝐴 / 𝑥 ] ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
20 |
3 19
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ↔ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
21 |
2 20
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] Rel 𝐹 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) ) |
22 |
1 21
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) ) |
23 |
|
dffun3 |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
24 |
23
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] Fun 𝐹 ↔ [ 𝐴 / 𝑥 ] ( Rel 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
25 |
|
dffun3 |
⊢ ( Fun ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↔ ( Rel ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ∧ ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( 𝑤 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 𝑧 → 𝑧 = 𝑦 ) ) ) |
26 |
22 24 25
|
3bitr4g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Fun 𝐹 ↔ Fun ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |