Step |
Hyp |
Ref |
Expression |
1 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) |
2 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
3 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
4 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
5 |
3 4
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
6 |
5
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
8 |
1 2 7
|
3bitrri |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
9 |
|
dfclel |
⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) |
10 |
9
|
biimpi |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) |
11 |
|
simpr |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) |
12 |
11
|
ax-gen |
⊢ ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) |
13 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
14 |
13
|
biimpi |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
15 |
12 14
|
mp1i |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
16 |
|
2a1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑉 → ( 𝜑 → 𝑦 = 𝐴 ) ) ) |
17 |
16
|
imp |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → 𝑦 = 𝐴 ) ) |
18 |
17
|
ancrd |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
19 |
18
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
20 |
|
19.37imv |
⊢ ( ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
22 |
15 21
|
impbid |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
23 |
10 22
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
24 |
8 23
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |