| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) |
| 2 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
| 3 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) |
| 4 |
|
sbv |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜑 ) |
| 5 |
3 4
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜑 ) |
| 6 |
5
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) |
| 8 |
1 2 7
|
3bitrri |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 9 |
|
dfclel |
⊢ ( 𝐴 ∈ 𝑉 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) |
| 10 |
9
|
biimpi |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) |
| 12 |
11
|
ax-gen |
⊢ ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) |
| 13 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ↔ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
| 14 |
13
|
biimpi |
⊢ ( ∀ 𝑦 ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
| 15 |
12 14
|
mp1i |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) → 𝜑 ) ) |
| 16 |
|
2a1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ 𝑉 → ( 𝜑 → 𝑦 = 𝐴 ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → 𝑦 = 𝐴 ) ) |
| 18 |
17
|
ancrd |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 19 |
18
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 20 |
|
19.37imv |
⊢ ( ∃ 𝑦 ( 𝜑 → ( 𝑦 = 𝐴 ∧ 𝜑 ) ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( 𝜑 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ) ) |
| 22 |
15 21
|
impbid |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝑉 ) → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 23 |
10 22
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝜑 ) ↔ 𝜑 ) ) |
| 24 |
8 23
|
bitr3id |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |