Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit class substitution.
(Contributed by NM, 4-Sep-2004)
|
|
Ref |
Expression |
|
Hypotheses |
sbcie.1 |
⊢ 𝐴 ∈ V |
|
|
sbcie.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
|
Assertion |
sbcie |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcie.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
sbcie.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
2
|
sbcieg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 4 |
1 3
|
ax-mp |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ 𝜓 ) |