Metamath Proof Explorer


Theorem sbcie2g

Description: Conversion of implicit substitution to explicit class substitution. This version of sbcie avoids a disjointness condition on x , A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses sbcie2g.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
sbcie2g.2 ( 𝑦 = 𝐴 → ( 𝜓𝜒 ) )
Assertion sbcie2g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcie2g.1 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
2 sbcie2g.2 ( 𝑦 = 𝐴 → ( 𝜓𝜒 ) )
3 dfsbcq ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑[ 𝐴 / 𝑥 ] 𝜑 ) )
4 sbsbc ( [ 𝑦 / 𝑥 ] 𝜑[ 𝑦 / 𝑥 ] 𝜑 )
5 1 sbievw ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 4 5 bitr3i ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
7 3 2 6 vtoclbg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝜑𝜒 ) )