Step |
Hyp |
Ref |
Expression |
1 |
|
sbcie2s.a |
⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) |
2 |
|
sbcie2s.b |
⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) |
3 |
|
sbcie2s.1 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) |
4 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑤 ) ∈ V |
5 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑤 ) ∈ V |
6 |
|
simprl |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝐸 ‘ 𝑤 ) = 𝐴 ) |
10 |
6 9
|
eqtrd |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → 𝑎 = 𝐴 ) |
11 |
|
simprr |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → 𝑏 = ( 𝐹 ‘ 𝑤 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝐹 ‘ 𝑤 ) = 𝐵 ) |
15 |
11 14
|
eqtrd |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → 𝑏 = 𝐵 ) |
16 |
10 15 3
|
syl2anc |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝜑 ↔ 𝜓 ) ) |
17 |
16
|
bicomd |
⊢ ( ( 𝑤 = 𝑊 ∧ ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ) → ( 𝜓 ↔ 𝜑 ) ) |
18 |
17
|
ex |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑎 = ( 𝐸 ‘ 𝑤 ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) ) |
19 |
4 5 18
|
sbc2iedv |
⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] 𝜓 ↔ 𝜑 ) ) |