Step |
Hyp |
Ref |
Expression |
1 |
|
sbcie3s.a |
⊢ 𝐴 = ( 𝐸 ‘ 𝑊 ) |
2 |
|
sbcie3s.b |
⊢ 𝐵 = ( 𝐹 ‘ 𝑊 ) |
3 |
|
sbcie3s.c |
⊢ 𝐶 = ( 𝐺 ‘ 𝑊 ) |
4 |
|
sbcie3s.1 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ∧ 𝑐 = 𝐶 ) → ( 𝜑 ↔ 𝜓 ) ) |
5 |
|
fvexd |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) ∈ V ) |
6 |
|
fvexd |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ V ) |
7 |
|
fvexd |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) ∈ V ) |
8 |
|
simpllr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑤 ) ) |
9 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
10 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐸 ‘ 𝑤 ) = ( 𝐸 ‘ 𝑊 ) ) |
11 |
8 10
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = ( 𝐸 ‘ 𝑊 ) ) |
12 |
11 1
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑎 = 𝐴 ) |
13 |
|
simplr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑤 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
15 |
14
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑊 ) ) |
16 |
13 15
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = ( 𝐹 ‘ 𝑊 ) ) |
17 |
16 2
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑏 = 𝐵 ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑤 ) ) |
19 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) |
20 |
19
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑊 ) ) |
21 |
18 20
|
eqtrd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = ( 𝐺 ‘ 𝑊 ) ) |
22 |
21 3
|
eqtr4di |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → 𝑐 = 𝐶 ) |
23 |
12 17 22 4
|
syl3anc |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜑 ↔ 𝜓 ) ) |
24 |
23
|
bicomd |
⊢ ( ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) ∧ 𝑐 = ( 𝐺 ‘ 𝑤 ) ) → ( 𝜓 ↔ 𝜑 ) ) |
25 |
7 24
|
sbcied |
⊢ ( ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) ∧ 𝑏 = ( 𝐹 ‘ 𝑤 ) ) → ( [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
26 |
6 25
|
sbcied |
⊢ ( ( 𝑤 = 𝑊 ∧ 𝑎 = ( 𝐸 ‘ 𝑤 ) ) → ( [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |
27 |
5 26
|
sbcied |
⊢ ( 𝑤 = 𝑊 → ( [ ( 𝐸 ‘ 𝑤 ) / 𝑎 ] [ ( 𝐹 ‘ 𝑤 ) / 𝑏 ] [ ( 𝐺 ‘ 𝑤 ) / 𝑐 ] 𝜓 ↔ 𝜑 ) ) |